🌎 Machine Learning Systems: Principles and Practices of Engineering Artificially Intelligent Systems (2025)
❔ Чему вы научитесь:
🔵 Проектировать ML systems architecture: training pipelines, serving infrastructure, feedback loops для production AI;
🔵 Обеспечивать reliability и scalability: model monitoring, A/B testing, canary deployments для stable ML services;
🔵 Оптимизировать performance: latency reduction, throughput optimization, resource utilization для cost-effective inference;
🔵 Решать data challenges: feature stores, data versioning, drift detection для maintaining model quality;
🔵 Внедрять MLOps practices: automation, reproducibility, collaboration между data scientists и engineers.
"Machine Learning Systems" 2025 года — systems engineering perspective на ML, выходящий за пределы model training. Книга показывает, что production ML — это 10% modeling, 90% engineering: от data pipelines до monitoring dashboards. Real-world challenges и solutions. Для ML engineers, software engineers entering ML, и tech leads, которые понимают, что Jupyter notebook с 95% accuracy — это не продукт, а prototype, и нужен systematic approach к building reliable, maintainable ML systems serving millions users.
🗄 Получить курс
Python | CMD