Ранее мы собрали в одном посте все типы языковых моделей. Сегодня остановимся на рассуждающих моделях и расскажем, как их учат думать.
✍️ Как устроено «мышление»
Стандартные языковые модели пытаются предсказать, какое слово с наибольшей вероятностью должно быть дальше в тексте — почти как система Т9 в мобильном телефоне.
Рассуждающая модель не играет в «угадайку». Она разбивает задачу на этапы и логически переходит от одного шага к другому, генерируя цепочку «мыслей» перед финальным ответом. Модель может ветвить пути рассуждений и выбирать наиболее правдоподобный. А чтобы она пользовалась актуальными и точными данными, разработчики закладывают в неё возможность доступа к внешним источникам информации: базам данных, справочникам, калькуляторам, календарям, веб-поисковикам. К рассуждающим моделям относятся GigaChat 2.0, GPT-4.5, Gemini 2.5, Claude 3.7 Sonnet.
5️⃣ Обучение
Рассуждающие модели обучают на задачах, где размечена логика рассуждения — например, на школьной арифметике.
В обучающие примеры добавляют шаблоны-подсказки, которые направляют мышление: «Давай подумаем шаг за шагом», «Во-первых…, во-вторых…, наконец…». Кстати, такие подсказки могут использовать пользователи в своих промптах, чтобы ответы были точнее.
Модель следует принципу самосогласованности (self-consistency). Ей показывают примеры рассуждений и повторяют один и тот же запрос, чтобы модель сгенерировала несколько ответов. Затем она выбирает самый частый или обоснованный вариант, а человек или модель-ассистент оценивают качество ответа.
Плюсы
🔘 Отвечают на сложные запросы
🔘 Дают возможность проследить ход рассуждений модели
Минусы
🔘 Пошаговое рассуждение создаёт больше текста, а значит, требует больше вычислительных ресурсов. Поэтому ответ генерируется медленнее
🔘 С виду логичная цепочка может вести к ошибочному выводу
❤️ — если любите смотреть, как рассуждает модель в ответ на запрос